GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.Zabela V, Hettich T, Schlotterbeck G, Wimmer L, Mihovilovic MD, Guillet F, Bouaita B, Shevchenko B, Hamburger M, Oufir M.
J Chromatogr B Analyt Technol Biomed Life Sci, Dec 2017Abstract : In a screening of natural products for allosteric modulators of GABAA receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABAA and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds.
MicroRNA regulation of CYP 1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity.Gill P, Bhattacharyya S, McCullough S, Letzig L, Mishra PJ, Luo C, Dweep H, James L
Sci Rep, Sep 2017Abstract :
MicroRNAs (miRNAs) that regulate the cytochrome P-450 isoforms involved in acetaminophen (APAP) toxicity were examined in HepaRG cells treated with APAP (20 mM). In-vitro studies found that APAP protein adducts were increased at 1 h, followed by ALT increases at 12 and 24 h. CYP1A2, CYP3A4 and CYP2E1 mRNA levels were decreased, while miRNAs were increased for miR-122-5p, miR-378a-5p, miR-27b-3p at 6 h and miR-125b-5p at 12 h and miR-27b-3p at 24 h. Putative miRNA binding sites on the 3'UTRs of the CYPs were identified in-silico. Overexpression of miR-122-5p and miR-378a-5p in cells suppressed protein expression of CYP1A2, CYP3A4 and CYP2E1. Luciferase reporter assays confirmed the interaction between miR-122 and the 3'UTR of the CYP1A2 and CYP3A4. Thus, the in-vitro experiments showed that miR-122-5p and miR-378a-5p upregulation were associated with translational repression of CYPs. Serum samples of children with APAP overdose had significant elevation of miR-122-5p, miR-378a-5p, miR-125b-5p and miR-27b-3p, compared to healthy controls and receiver operator curves of the miRNAs had AUCs of 91 to 100%. Collectively, the data suggest that miRNA elevations in APAP toxicity represent a regulatory response to modify CYP1A2, CYP3A4 and CYP2E1 translation due to cellular stress and injury.
Thymoquinone prevents endoplasmic reticulum stress and mitochondria-induced apoptosis in a rat model of partial hepatic warm ischemia reperfusion.Bouhlel A, Ben Mosbah I, Hadj Abdallah N, Ribault C
Biomed Pharmacother, Aug 2017Abstract :
This study was undertaken to evaluate the protective effect of thymoquinone (TQ), the bioactive compound of Nigella sativa seeds, against warm ischemia-reperfusion (I/R) injury in liver. Rats were given an oral administration of a vehicle solution (sham group) or TQ at the appropriate dose (10, 20, 30 and 40mg/kg) for ten days consecutively. Following, they were subjected to 60min of partial hepatic ischemia followed by 24h of reperfusion. .Transaminase activities, histopathological changes, TNFα and antioxidant parameters were evaluated. Also, endoplasmic reticulum (ER) stress, mitochondrial damage and apoptosis were studied. In addition, ERK and P38 phosphorylation was determined by Western blot technique. We found that TQ at 30mg/kg is the effective dose to protect rat liver against I/R injury. Moreover, 30mg/kg of TQ prevented histological damages, inflammation and oxidative stress. Interestingly, it decreased the expression of ER stress parameters including GRP78, CHOP and caspase-12. In parallel, it improved mitochondrial function and attenuated the expression of apoptotic parameters. Furthermore, TQ significantly enhanced ERK and P38 phosphorylation. In conclusion, we demonstrated the potential of TQ to protect the rat liver against I/R injury through the prevention of ER stress and mitochondrial dysfunction. These effects implicate the prevention of oxidative stress.
An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation.Compagnon P, Levesque E, Hentati H, Disabato M
Transplantation., Aug 2017Abstract :
Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model.
?2-adrenergic receptor-mediated in vitro regulation of human hepatic drug transporter expression by epinephrine.Mayati A, Moreau A, Denizot C, Stieger B, Parmentier Y, Fardel O
Eur J Pharm Sci, Jun 2017Abstract :
The catecholamine epinephrine is known to repress expression of hepatic drug metabolizing enzymes such as cytochromes P-450. The present study was designed to determine whether epinephrine may also target expression of main hepatic drug transporters, that play a major role in liver detoxification and are commonly coordinately regulated with drug detoxifying enzymes. Treatment of primary human hepatocytes with 10μM epinephrine for 24h repressed mRNA expression of various transporters, such as the sinusoidal influx transporters NTCP, OATP1B1, OATP2B1, OAT2, OAT7 and OCT1 and the efflux transporters MRP2, MRP3 and BSEP, whereas it induced that of MDR1, but failed to alter that of BCRP. Most of these changes in transporter mRNA levels were also found in epinephrine-exposed human highly-differentiated hepatoma HepaRG cells, which additionally exhibited reduced protein expression of OATP2B1 and MRP3, increased expression of P-glycoprotein and decreased transport activity of NTCP, OATPs and OCT1. Epinephrine effects towards transporter mRNA expression in human hepatocytes were next shown to be correlated to those of the selective β2-adrenoreceptor (ADR) agonist fenoterol, of the adenylate cyclase activator forskolin and of the cAMP analogue 8-bromo-cAMP. In addition, the non-selective β-ADR antagonist carazolol and the selective β2-ADR antagonist ICI-118,551, unlike the α-ADR antagonist phentolamine, suppressed epinephrine-mediated repressions of transporter mRNA expression. Taken together, these data indicate that epinephrine regulates in vitro expression of main hepatic drug transporters in a β2-ADR/adenylate cyclase/cAMP-dependent manner. Hepatic drug transport appears therefore as a target of the β2-adrenergic system, which may have to deserve attention for drugs interacting with β2-ADRs.
Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples.Richter LHJ, Flockerzi V, Maurer HH, Meyer MR
J Pharm Biomed Anal. , May 2017Abstract :
Metabolism studies play an important role in clinical and forensic toxicology. Because of potential species differences in metabolism, human samples are best suitable for elucidating metabolism. However, in the case of new psychoactive substances (NPS), human samples of controlled studies are not available. Primary human hepatocytes have been described as gold standard for in vitro metabolism studies, but there are some disadvantages such as high costs, limited availability, and variability of metabolic enzymes. Therefore, the aim of our study was to investigate and compare the metabolism of six methylenedioxy derivatives (MDMA, MDBD, butylone, MDPPP, MDPV, MDPB) and two bioisosteric analogues (5-MAPB, 5-API) using pooled human liver microsomes (pHLM) combined with cytosol (pHLC) or pooled human liver S9 fraction (pS9) all after addition of co-substrates for six phase I and II reactions. In addition, HepaRG and HepG2 cell lines were used. Results of the different in vitro tools were compared to each other, to corresponding published data, and to metabolites identified in human urine after consumption of MDMA, MDPV, or 5-MAPB. Incubations with pHLM plus pHLC showed similar results as pS9. A more cost efficient model for prediction of targets for toxicological screening procedures in human urine should be identified. As expected, the incubations with HepaRG provided better results than those with HepG2 concerning number and signal abundance of the metabolites. Due to easy handling without special equipment, incubations with pooled liver preparations should be the most suitable alternative to find targets for toxicological screening procedures for methylenedioxy derivatives and bioisosteric analogues.
Stable overexpression of the constitutive androstane receptor reduces the requirement for culture with dimethyl sulfoxide for high drug metabolism in HepaRG cells.Van der Mark VA, de Waart DR, Shevchenko V, Oude Elferink RP
Drug Metab Dispos, Oct 2016Abstract : Dimethyl sulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG. However, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine if overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (CYP) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target CYPs, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, while CYP3A4 was reduced. Moreover, the metabolism of low clearance compounds warfarin and prednisolone was increased. In conclusion, CAR-overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO may still be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, while reduced total protein content after DMSO culture is diminished by CAR overexpression.
Dimethyl sulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG. However, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine if overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (CYP) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target CYPs, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, while CYP3A4 was reduced. Moreover, the metabolism of low clearance compounds warfarin and prednisolone was increased. In conclusion, CAR-overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO may still be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, while reduced total protein content after DMSO culture is diminished by CAR overexpression.
Early Alterations of Bile Canaliculi Dynamics and the Rho Kinase/Myosin Light Chain Kinase Pathway Are Characteristics of Drug-Induced Intrahepatic Cholestasis.Burbank, Burban, Sharanek, Weaver, Guguen-Guillouzo, Guillouzo.
Drug Metab Dispos, Aug 2016Abstract : 1. Among the different in vitro studies recommended by the regulatory agencies, no gold-standard model can easily and directly measure the quantitative CYP450 contributions to drug biotransformation. In this article, we propose an original strategy, called SilensomesTM, to produce human liver microsomes silenced for one specific CYP450, thanks to specific mechanism-based inhibitors (MBI). 2. Using azamulin as a specific CYP3A4 MBI, we demonstrated the proof of concept that CYP3A4 can be totally, specifically (even against 3A5) and permanently (at least for six years) inhibited by our process. Thus, comparing clearance in control and CYP3A4-SilensomesTM, CYP3A4 contributions were determined for 11 CYP3A4 substrates which correlated with known in vivo contributions and revealed accuracy with less than 10% error. In comparison, contributions determined using recombinant human CYP450 (rhCYP450s) were less accurate (more than 10% error for 30% of the tested CYP3A4 substrates). 3. This easy and ready-to-use in vitro method combines the advantages of existing models (specificity of rhCYP450s and representativeness of HLM) without their drawbacks. The same strategy could be used to silence other major CYP450s one-by-one to provide a complete direct CYP450 quantitative phenotyping kit.
Direct and quantitative evaluation of the human CYP3A4 contribution (fm) to drug clearance using the in vitro SILENSOMES model.Parmentier Y, Pothier C , Delmas A , Caradec F,Trancart MM, Guillet F, Bouaita B, Chesne C, Brian Houston J, Walther B.
Xenobiotica, Aug 2016Abstract : 1. Among the different in vitro studies recommended by the regulatory agencies, no gold-standard model can easily and directly measure the quantitative CYP450 contributions to drug biotransformation. In this article, we propose an original strategy, called SilensomesTM, to produce human liver microsomes silenced for one specific CYP450, thanks to specific mechanism-based inhibitors (MBI). 2. Using azamulin as a specific CYP3A4 MBI, we demonstrated the proof of concept that CYP3A4 can be totally, specifically (even against 3A5) and permanently (at least for six years) inhibited by our process. Thus, comparing clearance in control and CYP3A4-SilensomesTM, CYP3A4 contributions were determined for 11 CYP3A4 substrates which correlated with known in vivo contributions and revealed accuracy with less than 10% error. In comparison, contributions determined using recombinant human CYP450 (rhCYP450s) were less accurate (more than 10% error for 30% of the tested CYP3A4 substrates). 3. This easy and ready-to-use in vitro method combines the advantages of existing models (specificity of rhCYP450s and representativeness of HLM) without their drawbacks. The same strategy could be used to silence other major CYP450s one-by-one to provide a complete direct CYP450 quantitative phenotyping kit.
1. Among the different in vitro studies recommended by the regulatory agencies, no gold-standard model can easily and directly measure the quantitative CYP450 contributions to drug biotransformation. In this article, we propose an original strategy, called SilensomesTM, to produce human liver microsomes silenced for one specific CYP450, thanks to specific mechanism-based inhibitors (MBI). 2. Using azamulin as a specific CYP3A4 MBI, we demonstrated the proof of concept that CYP3A4 can be totally, specifically (even against 3A5) and permanently (at least for six years) inhibited by our process. Thus, comparing clearance in control and CYP3A4-SilensomesTM, CYP3A4 contributions were determined for 11 CYP3A4 substrates which correlated with known in vivo contributions and revealed accuracy with less than 10% error. In comparison, contributions determined using recombinant human CYP450 (rhCYP450s) were less accurate (more than 10% error for 30% of the tested CYP3A4 substrates). 3. This easy and ready-to-use in vitro method combines the advantages of existing models (specificity of rhCYP450s and representativeness of HLM) without their drawbacks. The same strategy could be used to silence other major CYP450s one-by-one to provide a complete direct CYP450 quantitative phenotyping kit.
Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines.van Wenum M, Adam AA, Hakvoort T, Hendriks EJ, Shevchenko V, van Gulik TM, Chamuleau RA, Hoekstra R.
Int J Biol Sci., Jul 2016Abstract : Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application.
Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs.Sharanek A, Burban A, Burbank M, Le Guevel R, Li R, Guillouzo A, Guguen Guillouzo
scientific reports, May 2016Abstract :
Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis.
PDF here
In silico tools and transcriptomics analyses in the mutagenicity assessment of cosmetic ingredients: a proof-of-principle on how to add weight to the evidenceAtes G, Raitano G, Heymans A, Van Bossuyt M, Vanparys P, Mertens B, Chesne C, Roncaglioni A, Milushev D, Benfenati E, Rogiers V, Doktorova TY
Mutagenesis, Mar 2016Abstract : Prior to the downstream development of chemical substances, including pharmaceuticals and cosmetics, their influence on the genetic apparatus has to be tested. Several in vitro and in vivo assays have been developed to test for genotoxicity. In a first tier, a battery of two to three in vitro tests is recommended to cover mutagenicity, clastogenicity and aneugenicity as main endpoints. This regulatory in vitro test battery is known to have a high sensitivity, which is at the expense of the specificity. The high number of false positive in vitro results leads to excessive in vivo follow-up studies. In the case of cosmetics it may even induce the ban of the particular compound since in Europe the use of experimental animals is no longer allowed for cosmetics. In this article, an alternative approach to derisk a misleading positive Ames test is explored. Hereto we first tested the performance of five existing computational tools to predict the potential mutagenicity of a data set of 132 cosmetic compounds with a known genotoxicity profile. Furthermore, we present, as a proof-of-principle, a strategy in which a combination of computational tools and mechanistic information derived from in vitro transcriptomics analyses is used to derisk a misleading positive Ames test result. Our data shows that this strategy may represent a valuable tool in a weight-of-evidence approach to further evaluate a positive outcome in an Ames test.
Prior to the downstream development of chemical substances, including pharmaceuticals and cosmetics, their influence on the genetic apparatus has to be tested. Several in vitro and in vivo assays have been developed to test for genotoxicity. In a first tier, a battery of two to three in vitro tests is recommended to cover mutagenicity, clastogenicity and aneugenicity as main endpoints. This regulatory in vitro test battery is known to have a high sensitivity, which is at the expense of the specificity. The high number of false positive in vitro results leads to excessive in vivo follow-up studies. In the case of cosmetics it may even induce the ban of the particular compound since in Europe the use of experimental animals is no longer allowed for cosmetics. In this article, an alternative approach to derisk a misleading positive Ames test is explored. Hereto we first tested the performance of five existing computational tools to predict the potential mutagenicity of a data set of 132 cosmetic compounds with a known genotoxicity profile. Furthermore, we present, as a proof-of-principle, a strategy in which a combination of computational tools and mechanistic information derived from in vitro transcriptomics analyses is used to derisk a misleading positive Ames test result. Our data shows that this strategy may represent a valuable tool in a weight-of-evidence approach to further evaluate a positive outcome in an Ames test.
Nigramide J is a novel potent inverse agonist of the human constitutive androstane receptorKanno Y, Tanuma N, Yatsu T, Li W, Koike K, Inouye Y
PRP, Nov 2014Abstract : The constitutive androstane receptor (CAR, NR1I3) is very important for drug development and for understanding pharmacokinetic drug-drug interactions. We screened by mammalian one hybrid assay among natural compounds to discover novel ligands of human constitutive androstane receptor (hCAR). hCAR transcriptional activity was measured by luciferase assay and mRNA levels of CYP2B6 and CYP3A4 in HepTR-hCAR cells and human primary hepatocytes were measured by real-time RT-PCR. Nigramide J (NJ) whose efficacy is comparable to those of hitherto known inverse agonists such as clotrimazole, PK11195, and ethinylestradiol. NJ is a naturally occurring cyclohexane-type amide alkaloid that was isolated from the roots of Piper nigrum. The suppressive effect of NJ on the CAR-dependent transcriptional activity was found to be species specific, in the descending order of hCAR, rat CAR, and mouse CAR. The unliganded hCAR-dependent transactivation of reporter and endogenous genes was suppressed by NJ at concentrations higher than 5 μmol/L. The ligand-binding cavity of hCAR was shared by NJ and CITCO, because they were competitive in the binding to hCAR. NJ interfered with the interaction of hCAR with coactivator SRC-1, but not with its interaction with the corepressor NCoR1. Furthermore, NJ is agonist of human pregnane X receptor (hPXR). NJ is a dual ligand of hCAR and hPXR, being an agonist of hPXR and an inverse agonist of hCAR.
Dual Effects of Ketoconazole cis-Enantiomers on CYP3A4 in Human Hepatocytes and HepG2 CellsNovotna A, Krasulová K, Bartonková I, Korhonová M, Bachleda P, Anzenbacher P, Dvorák Z
Plos One, Oct 2014Abstract : Antifungal drug ketoconazole causes severe drug-drug interactions by influencing gene expression and catalytic activity of major drug-metabolizing enzyme cytochrome P450 CYP3A4. Ketoconazole is administered in the form of racemic mixture of two cis-enantiomers, i.e. (+)-ketoconazole and (-)-ketoconazole. Many enantiopure drugs were introduced to human pharmacotherapy in last two decades. In the current paper, we have examined the effects of ketoconazole cis-enantiomers on the expression of CYP3A4 in human hepatocytes and HepG2 cells and on catalytic activity of CYP3A4 in human liver microsomes. We show that both ketoconazole enantiomers induce CYP3A4 mRNA and protein in human hepatocytes and HepG2 cells. Gene reporter assays revealed partial agonist activity of ketoconazole enantiomers towards pregnane X receptor PXR. Catalytic activity of CYP3A4/5 towards two prototypic substrates of CYP3A enzymes, testosterone and midazolam, was determined in presence of both (+)-ketoconazole and (-)-ketoconazole in human liver microsomes. Overall, both ketoconazole cis-enantiomers induced CYP3A4 in human cells and inhibited CYP3A4 in human liver microsomes. While interaction of ketoconazole with PXR and induction of CYP3A4 did not display enantiospecific pattern, inhibition of CYP3A4 catalytic activity by ketoconazole differed for ketoconazole cis-enantiomers ((+)-ketoconazole IC?? 1.69 µM, Ki 0.92 µM for testosterone, IC?? 1.46 µM, Ki 2.52 µM for midazolam; (-)-ketoconazole IC?? 0.90 µM, Ki 0.17 µM for testosterone, IC?? 1.04 µM, Ki 1.51 µM for midazolam).
Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory AgentsVanco J, Gáliková J, Ho?ek J, Dvo?ák Z, Paráková L, Trávní?ek Z
Plos One, Oct 2014Abstract : The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1-5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1-5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1-5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1-5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds.
Utility of cryopreserved hepatocytes suspended in serum to predict hepatic clearance in dogs and monkeysShibata Y, Kuze J, Chiba M
Drug Metab Pharmacokinet, Sep 2014Abstract : An in vitro-in vivo correlation analysis between observed and predicted metabolic clearance in multiple preclinical species including dogs and monkeys constitutes an integral part of prediction for the pharmacokinetics in humans by using liver-derived in vitro preparations. Empirical values of the scaling factor for the extrapolation of metabolic (intrinsic) clearance in the in vitro preparation to that for whole liver were calculated for each preparation of 8 and 5 cryopreserved dog and monkey hepatocytes, respectively, by optimizing the objective function of average fold error between predicted and observed metabolic (intrinsic) clearance for eight and 11 standard compounds for dogs and monkeys, respectively. Thus obtained values of the scaling factor ranged from 5.46 × 10(9) to 19.9 × 10(9) cells/kg body weight with an average of 10.3 × 10(9) cells/kg body weight in dogs, and the value ranged from 2.36 × 10(9) to 4.21 × 10(9) cells/kg body weight with an average of 3.17 × 10(9) cells/kg body weight in monkeys, which were both consistent with biologically calculated values in corresponding species. These results demonstrated the utility of commercially available cryopreserved preparations of dog and monkey hepatocytes for the in vitro-in vivo correlation analyses with the aid of empirically or biologically obtained scaling factors at the early development stage of new drug candidates.
Histone Deacetylase Inhibitor Valproic Acid Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like CellsKondo Y, Iwao T, Yoshihashi S, Mimori K, Ogihara R, Nagata K, Kurose K, Saito M, Niwa T, Suzuki T, Miyata N, Ohmori S, Nakamura K, Matsunaga T
Plos One, Aug 2014Abstract : In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells.
Omeprazole and Lansoprazole Enantiomers Induce CYP3A4 in Human Hepatocytes and Cell Lines via Glucocorticoid Receptor and Pregnane X Receptor AxisNovotna A, Dvorak Z
Plos One, Aug 2014Abstract : Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.
Differential Effects of Omeprazole and Lansoprazole Enantiomers on Aryl Hydrocarbon Receptor in Human Hepatocytes and Cell LinesNovotna A, Srovnalova A, Svecarova M, Korhonova M, Bartonkova I, Dvorak Z
Plos One, Jul 2014Abstract : Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.
Enantiospecific Effects of Ketoconazole on Aryl Hydrocarbon ReceptorNovotna A, Korhonova M, Bartonkova I, Soshilov AA, Denison MS, Bogdanova K, Kolar M, Bednar P, Dvorak Z
Plos One, Jul 2014Abstract : Azole antifungal ketoconazole (KET) was demonstrated to activate aryl hydrocarbon receptor (AhR). Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S)-(+)-KET and (2S,4R)-(-)-KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+)-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy), as compared to (-)-KET; both enantiomers were AhR antagonists with equal potency (IC50). Consistently, (+)-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (-)-KET exerted less than 10% of (+)-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+)-KET was slightly higher as compared to (-)-KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+)-KET and (-)-KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR), a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway
Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytesSugiyama Y, Yamazaki K, Kusaka-Kikushima A, Nakahigashi K, Hagiwara H, Miyachi Y
Open Bio, Jun 2014Abstract : Aquaporin 9 (AQP9) is a member of the aquaglyceroporin family that transports glycerol, urea and other small solutes as well as water. Compared to the expression and function in epidermal keratinocytes of AQP3, another aquaglyceroporin, our knowledge of epidermal AQP9 remains elusive. In this study, we investigated the expression of AQP9 in the human epidermis and cultured keratinocytes. Immunofluorescence studies revealed that AQP9 expression is highly restricted to the stratum granulosum of the human epidermis, where occludin is also expressed at the tight junctions. Interestingly, the AQP3 staining decreased sharply below the cell layers in which AQP9 is expressed. In cultured normal human epidermal keratinocytes (NHEK), knock-down of AQP9 expression in the differentiated cells induced by RNA interference reduced glycerol uptake, which was not as pronounced as was the case with AQP3 knock-down cells. In contrast, similar reduction of urea uptake was detected in AQP9 and AQP3 knock-down cells. These findings suggested that AQP9 expression in NHEK facilitates at least the transport of glycerol and urea. Finally, we analyzed the effect of retinoic acid (RA), a potent stimulator of keratinocyte proliferation, on AQP3 and AQP9 mRNA expression in differentiated NHEK. Stimulation with RA at 1 μM for 24 h augmented AQP3 expression and down-regulated AQP9 expression. Collectively, these results indicate that AQP9 expression in epidermal keratinocytes is regulated in a different manner from that of AQP3.
Comparison of xenobiotic metabolizing enzyme activities in ex vivo human skin and reconstructed human skin models from SkinEthicEilstein J, Léreaux G, Budimir N, Hussler G, Wilkinson S, Duché D
Toxicokinetics and Metabolism, Mar 2014Abstract : Skin function is not limited to a physical barrier. According to its total surface area, it is also considered as an extra-hepatic metabolizing organ. In vitro engineered human skins have been developed to replace limited ex vivo normal human skin samples (NHS). Thus, assessing and comparingskin models from SkinEthic [Episkin™, RHE™ and the full thickness model (FTM)] with NHS in terms of metabolic capability are essential. The apparent activities of main cutaneous isoforms of cytochrome P450-dependent monooxygenases (CYP1A1/1B1, 2B6/2C18/2E1, 3A5/3A7), esterase, glutathione-S-[(GST), A, M, P, T], N-acetyl-(NAT1), uridinyl-diphosphate glucuronyl-(UDPGT 1A family) and sulfo-(SULT1A1) transferases were determined using probe substrates. Mean activities indicative of CYP1A1/1B1 (expressed as pmol/mg protein/6 h) in RHE™ (2.8) and FTM (2.6) were very similar to NHS (3.0) while Episkin™ showed a higher activity (9.1). Activities of CYP3A5/3A7 in FTM (3.3) and Episkin™ (3.6) were similar to NHS (3.8) while activity in RHE™ (13.3) was higher. CYP2B6/2C18/2E1 activity was below LOQ (0.5) in all skin models and NHS. Comparable intrinsic metabolic clearances were measured between NHS and skin models for esterase, UDPGT, GST and NAT1 activities. SULT1A1 activity toward probe substrates was not detected in skin models and observed at the limit of detection in NHS. Weak cytochrome P450-dependent monooxygenases, high esterase and transferase activities suggested that NHS and skin models exhibited limited functionalization and much greater detoxification (hydrolytic and conjugating) capacities. These results demonstrate that skin models are similar to NHS in terms of metabolic functionality toward xenobiotics investigated and useful tools to assess both the local efficiency and safety of cosmetics.
A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney InjuryKumar Ajay A, Kim T-M, Vaidya VS
JASN, Jan 2014Abstract : Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.
Transport Rankings of Non-Steroidal Antiinflammatory Drugs across Blood-Brain Barrier In Vitro ModelsNovakova I, Subileau EA, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W
Plos One, Jan 2014Abstract : The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.
Effects of the Amino Acid Constituents of Microcystin Variants on Cytotoxicity to Primary Cultured Rat HepatocytesShimizu K, Sano T, Kubota R, Kobayashi N, Tahara M, Obama T, Sugimoto N, Nishimura T, Ikarashi Y
Toxins, Dec 2013Abstract : Microcystins, which are cyclic heptapeptides produced by some cyanobacterial species from algal blooms, strongly inhibit serine/threonine protein phosphatase and are known as hepatotoxins. Microcystins have many structural variations, yet insufficient information is available on the differences in the cytotoxic potentials among the structural variants. In this study, the cytotoxicities of 16 microcystin variants at concentrations of 0.03-10 μg/mL to primary cultured rat hepatocytes were determined by measuring cellular ATP content, and subsequently determined by their 50% inhibitory concentration (IC50). Differences in the amino acid constituents were associated with differences in cytotoxic potential. [D-Asp3, Z-Dhb7] microcystin-LR exhibited the strongest cytotoxicity at IC50 of 0.053 μg/mL among the microcystin variants tested. Furthermore, [d-Asp3, Z-Dhb7] microcystin-HtyR was also highly cytotoxic. These results suggest that both D-Asp and Z-Dhb residues are important in determining the cytotoxic potential of microcystin variants.
Galactose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian HepatocytesHayward AS, Eissa AM, Maltman DJ, Sano N, Przyborski SA, Cameron NR
BioMacromolecules, Nov 2013Abstract : Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2'-aminoethyl-β-D-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7-9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the galactose-functionalized material, suggesting that the surface carbohydrates are accessible and selective to cells entering the scaffold. This porous polymer scaffold could, therefore, have important application as a 3D scaffold that offers enhanced hepatocyte adhesion and functionality.
Khellin and Visnagin Differentially Modulate AHR Signaling and Downstream CYP1A Activity in Human Liver CellsVrzal R, Frauenstein K, Proksch P, Abel J, Dvorak Z, Haarmann-Stemmann T
Plos One, Sep 2013Abstract : Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones.
Permissivity of Primary Human Hepatocytes and Different Hepatoma Cell Lines to Cell Culture Adapted Hepatitis C VirusHelle F, Brochot E, Fournier C, Descamps V, Izquierdo L, Hoffmann TW, Morel V, Herpe YE, Bengrine A, Belouzard S, Wychowski C, Dubuisson J, Francois C, Regimbeau JM, Castelain S, Duverlie G
Plos One, Aug 2013Abstract : Significant progress has been made in Hepatitis C virus (HCV) culture since the JFH1 strain cloning. However, developing efficient and physiologically relevant culture systems for all viral genotypes remains an important goal. In this work, we aimed at producing a high titer JFH1 derived virus to test different hepatic cells' permissivity. To this end, we performed successive infections and obtained a JFH1 derived virus reaching high titers. Six potential adaptive mutations were identified (I599V in E2, R1373Q and M1611T in NS3, S2364P and C2441S in NS5A and R2523K in NS5B) and the effect of these mutations on HCV replication and infectious particle production was investigated. This cell culture adapted virus enabled us to efficiently infect primary human hepatocytes, as demonstrated using the RFP-NLS-IPS reporter protein and intracellular HCV RNA quantification. However, the induction of a strong type III interferon response in these cells was responsible for HCV inhibition. The disruption of this innate immune response led to a strong infection enhancement and permitted the detection of viral protein expression by western blotting as well as progeny virus production. This cell culture adapted virus also enabled us to easily compare the permissivity of seven hepatoma cell lines. In particular, we demonstrated that HuH-7, HepG2-CD81, PLC/PRF/5 and Hep3B cells were permissive to HCV entry, replication and secretion even if the efficiency was very low in PLC/PRF/5 and Hep3B cells. In contrast, we did not observe any infection of SNU-182, SNU-398 and SNU-449 hepatoma cells. Using iodixanol density gradients, we also demonstrated that the density profiles of HCV particles produced by PLC/PRF/5 and Hep3B cells were different from that of HuH-7 and HepG2-CD81 derived virions. These results will help the development of a physiologically relevant culture system for HCV patient isolates.
An In Vitro Expansion System for Generation of Human iPS Cell-Derived Hepatic Progenitor-Like Cells Exhibiting a Bipotent Differentiation PotentialYanagida A, Ito K, Chikada H, Nakauchi H, Kamiya A
Plos One, Jul 2013Abstract : Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(high)CD133(+) cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.
Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signalingChou WC, Takeo M, Rabbani P, Hu H, Lee W, Chung YR, Carucci J, Overbeek P, Ito M
Nat Med, Jul 2013Abstract : During wound healing, stem cells provide functional mature cells to meet acute demands for tissue regeneration. Simultaneously, the tissue must maintain a pool of stem cells to sustain its future regeneration capability. However, how these requirements are balanced in response to injury is unknown. Here we demonstrate that after wounding or ultraviolet type B irradiation, melanocyte stem cells (McSCs) in the hair follicle exit the stem cell niche before their initial cell division, potentially depleting the pool of these cells. We also found that McSCs migrate to the epidermis in a melanocortin 1 receptor (Mc1r)-dependent manner and differentiate into functional epidermal melanocytes, providing a pigmented protective barrier against ultraviolet irradiation over the damaged skin. These findings provide an example in which stem cell differentiation due to injury takes precedence over stem cell maintenance and show the potential for developing therapies for skin pigmentation disorders by manipulating McSCs.
Pelargonidin activates the AhR and induces CYP1A1 in primary human hepatocytes and human cancer cell lines HepG2 and LS174TKamenickova A, Anzenbacherova E, Pavek P, Soshilov AA, Denison MS, Anzenbacher P, Dvorak Z
Toxicol Lett, Apr 2013Abstract : We examined the effects of anthocyanidins (cyanidin, delphinidin, malvidin, peonidin, petunidin, pelargonidin) on the aryl hydrocarbon receptor (AhR)-CYP1A1 signaling pathway in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cells. AhR-dependent reporter gene expression in transfected HepG2 cells was increased by pelargonidin in a concentration-dependent manner at 24h. Similarly, pelargonidin induced the expression of CYP1A1 mRNA up to 5-fold in HepG2 and LS174T cells relative to the induction by 5 nM 2,3,7,8-tetrachlorodibenzodioxin (TCDD), the most potent activator of AhR. CYP1A1 and CYP1A2 mRNAs were also increased by pelargonidin in three primary human hepatocytes cultures (approximately 5% of TCDD potency) and the increase in CYP1A1 protein in HepG2 and LS174T cells was comparable to the increase in catalytic activity of CYP1A1 enzyme. Ligand binding analysis demonstrated that pelargonidin was a weak ligand of AhR. Enzyme kinetic analyses using human liver microsomes revealed inhibition of CYP1A1 activity by delphinidin (IC50 78 μM) and pelargonidin (IC50 33 μM). Overall, although most anthocyanidins had no effects on AhR-CYP1A1 signaling, pelargonidin can bind to and activate the AhR and AhR-dependent gene expression, and pelargonidin and delphinidin inhibit the CYP1A1 catalytic activity.
Three-Dimensional Expansion Using Plasma-Medium Gel with Fragmin/Protamine Nanoparticles and FGF-2 to Stimulate Adipose-Derived Stromal Cells and Bone Marrow-Derived Mesenchymal Stem CellsKishimoto S, Ishihara M, Mori Y, Takikawa M, Sumi Y, Nakamura S, Sato T, Kiyosawa T
BioResearch, Dec 2012Abstract : Fragmin/protamine nanoparticles (F/P NPs) have been used as carriers for the preservation and controlled release of fibroblast growth factor (FGF)-2 and various cytokines in human plasma (HP). This study tested an HP-Dulbecco's modified Eagle's medium (DMEM) gel as a three-dimensional (3D) culture for the expansion of adipose tissue-derived multilineage stromal cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs). The growth of these cells improved in 3D culture using low-concentration HP (2%)-DMEM gel with 0.1 mg/mL F/P NPs and 5 ng/mL FGF-2 without animal serum in comparison to two-dimensional (2D) culture using a low-concentration human serum (2%)-DMEM containing 5 ng/mL FGF-2 on F/P NPs-coated plates. ASCs and BMSCs, which were expanded in the low-concentration HP-DMEM gel with F/P NPs and FGF-2, maintained their multilineage potential for differentiation into adipocytes or osteoblasts similar to the 2D cultured cells. Furthermore, flow cytometric analyses showed that the phenotypic markers which were positive for CD44, CD90, and CD105 (>80%) and negative for CD34 and CD45 (
Synthesis of New N,N'-Bis(5-arylidene-4-oxo- 4,5-dihydrothiazolin-2-yl)piperazine Derivatives Under Microwave Irradiation and Preliminary Biological EvaluationCoulibaly WK, Paquin L, Bénié A, Bekro YA, Durieux E, Meijer L, Le Guével R, Corlu A, Bazureau JP
Scientia Pharmaceutica, Sep 2012Abstract : New N,N'-bis(5-arylidene-4-oxo-4,5-dihydrothiazoline-2-yl)diamine derivatives 5 were prepared in two steps from rhodanine and piperazine, or 1,4-bis(3-amino-propyl)piperazine, under microwave reaction conditions with retention of configuration. Some of these compounds were tested for in vitro antiproliferative activities and for their kinase inhibitory potencies towards six kinases (CDK5/p25, GSK3α/β, DYRK1A, DYRK2, CLK1, and CLK2). The compound 5d showed nanomolar activity towards DYRK1A kinase (IC(50) = 0.041 μM).
Cleavage of Nidogen-1 by Cathepsin S Impairs Its Binding to Basement Membrane PartnersSage J, Leblanc-Noblesse E, Nizard C, Sasaki T, Schnebert S, Perrier E, Kurfurst R, Brömme D, Lalmanach G, Lecaille F
Plos One, Aug 2012Abstract : Cathepsin S (catS), which is expressed in normal human keratinocytes and localized close to the dermal-epidermal junction (DEJ) degrades some of major basement membrane (BM) constituents. Among them, catS readily hydrolyzed in a time and dose dependent manner human nidogen-1 (nid-1) and nidogen-2, which are key proteins in the BM structure. CatS preferentially cleaved nid-1 at both acid and neutral pH. Hydrolysis of nid-1 was hampered in murine ctss(-/-) spleen lysates pretreated with inhibitors of other classes of proteases. Nid-1 was cleaved within its G2 and G3 globular domains that are both involved in interactions with other BM components. Binding assays with soluble and immobilized ligands indicated that catS altered the formation of complexes between nid-1 and other BM components. Assuming that the cleavage of nid-1 impairs its ability to crosslink with BM partners and perturbs the viscoelastic properties of BM matrix, these data indicate that catS may participate in BM proteolysis, in addition to already identified proteases.
Defining new criteria for selection of cell-based intestinal models using publicly available databasesChristensen J, El-Gebali S, Natoli M, Sengstag T, Delorenzi M, Bentz S, Bouzourene H, Rumbo M, Felsani A, Siissalo S, Hirvonen J, Vila MR, Saletti P, Aguet M, Anderle P
BMC Genomics, Jun 2012Abstract : Background: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies.Results: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics.Conclusions: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Effect of Direction (Epidermis-To-Dermis and Dermis-To-Epidermis) on the Permeation of Several chemical Compounds through full-thickness Skin and Stripped SkinOshizaka T, Todo H, Sugibayashi K
Pharm Res, May 2012Abstract : PURPOSE: Compound permeation through stratum corneum-stripped skin is generally greater than that through full-thickness skin. In addition, epidermis-to-dermis permeation profile should be the same as dermis-to-epidermis permeation profile. However, stripped skin permeability of some compounds was lower than full-thickness skin permeability and different permeabilities were found for some compounds between the two directions of skin permeation. The reasons for these findings were investigated in this study.METHODS: Full-thickness or stripped hairless rat skin was set in a Franz-type diffusion cell, and a solution of compound was applied on the epidermis or dermis side to determine the in vitro skin permeability.RESULTS: Although the stripped skin permeability of pentyl paraben (PeP) with extremely high logK(o/w) was lower than full-thickness skin permeabilities, the addition of 3% ethanol resulted in the expected permeation order. Epidermis-to-dermis permeation of PeP through full-thickness skin was higher than dermis-to-epidermis permeation. Epidermis-to-dermis permeations of fluorescein isothiocyanate dextran (FD-4) and isosorbide 5-mononitrate with negative logK(o/w) were also higher than those in the opposite direction.CONCLUSIONS: Morphological observation of skin after FD-4 permeation suggested that a conically shaped trans-follicular permeation pathway model could be advocated to explain the difference between the epidermis-to-dermis permeation and that in the opposite direction.
Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxinsGerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA
Cell Bio, Apr 2012Abstract : In the pharmaceutical industry, improving the early detection of drug-induced hepatotoxicity is essential as it is one of the most important reasons for attrition of candidate drugs during the later stages of drug development. The first objective of this study was to better characterize different cellular models (i.e., HepG2, HepaRG cells, and fresh primary human hepatocytes) at the gene expression level and analyze their metabolic cytochrome P450 capabilities. The cellular models were exposed to three different CYP450 inducers; beta-naphthoflavone (BNF), phenobarbital (PB), and rifampicin (RIF). HepG2 cells responded very weakly to the different inducers at the gene expression level, and this translated generally into low CYP450 activities in the induced cells compared with the control cells. On the contrary, HepaRG cells and the three human donors were inducible after exposure to BNF, PB, and RIF according to gene expression responses and CYP450 activities. Consequently, HepaRG cells could be used in screening as a substitute and/or in complement to primary hepatocytes for CYP induction studies. The second objective was to investigate the predictivity of the different cellular models to detect hepatotoxins (16 hepatotoxic and 5 nonhepatotoxic compounds). Specificity was 100% with the different cellular models tested. Cryopreserved human hepatocytes gave the highest sensitivity, ranging from 31% to 44% (depending on the donor), followed by lower sensitivity (13%) for HepaRG and HepG2 cells (6.3%). Overall, none of the models under study gave desirable sensitivities (80-100%). Consequently, a high metabolic capacity and CYP inducibility in cell lines does not necessarily correlate with a high sensitivity for the detection of hepatotoxic drugs. Further investigations are necessary to compare different cellular models and determine those that are best suited for the detection of hepatotoxic compounds.
In vitro Evaluation of the Interaction Potential of Irosustat with Drug Metabolizing EnzymesVentura V, Solà J, Peraire C, Brée F, Obach R
Drug Metab Dis, Mar 2012Abstract : Irosustat is a first-generation, irreversible, steroid sulfatase inhibitor currently in development for hormone-dependent cancer therapy. To predict clinical drug-drug interactions between irosustat and possible concomitantly administered medications, the inhibition/induction potential of irosustat with the main drug-metabolizing enzymes was investigated in vitro. The interaction of aromatase inhibitors in the in vitro metabolism of irosustat was also studied. Irosustat inhibited CYP1A2 activity in human liver microsomes through the formation of its desulfamoylated degradation product and metabolite 667-coumarin. CYP1A2 inhibition by 667-coumarin was competitive, with a K(i) of 0.77 μM, a concentration exceeding by only 5-fold the maximal steady-state concentration of 667-coumarin in human plasma with the recommended dose of irosustat. In addition, 667-coumarin metabolites enhanced the inhibition of CYP1A2 activity. Additional clinical interaction studies of irosustat with CYP1A2 substrate drugs are strongly recommended. 667-Coumarin also appeared to be a competitive inhibitor of CYP2C19 (K(i) = 5.8 μM) in human liver microsomes, and this inhibition increased with assessment in human hepatocytes. Inhibition of CYP2C19 enzyme activity was not caused by repression of CYP2C19 gene expression. Therefore, additional mechanistic experiments or follow-up studies with clinical evaluation are recommended. Irosustat neither inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4/5, or UDP-glucuronosyltransferase 1A1, 1A4, or 2B7 activities nor induced CYP1A2, CYP2C9, CYP2C19, or CYP3A4/5 at clinically relevant concentrations. Results from human liver microsomes indicated that no changes in irosustat pharmacokinetics in vivo are expected as a result of inhibition of irosustat metabolism in cases of concomitant medication administration or irosustat-aromatase inhibitor combination therapy with letrozole, anastrozole, or exemestane.
A possible regulation mechanism of water content in human stratum corneum via intercellular lipid matrixNakazama H, Ohta N, Hatta I
Chem. & Physics, Feb 2012Abstract : We studied the water regulation mechanism in human stratum corneum which is composed of corneocytes and intercellular lipid matrix by the ex vivo small- and medium-angle X-ray diffraction. Under the normal condition water molecules are stored mainly in the corneocytes. When the water content increased, from the small-angle X-ray diffraction of the human stratum corneum we obtained the swelling behavior of the short lamellar lipid structure as a result of incorporating a very small amount of water into water layers between neighboring the lipid bilayers, and its diffraction peak width became narrow and turned to wide at the water content of 20-30wt%. In addition as evidence for uptake of water in the corneocytes, we observed the structural modification of soft keratins in the corneocytes from the medium-angle X-ray diffraction. Based upon these results we propose that the water content in the human stratum corneum is regulated to be at 20-30wt% so as to stabilize the short lamellar structure in the intercellular lipid matrix.
Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer AetiologyPaget V, Lechevrel M, André V, Goff JL, Pottier D, Billet S, Garçon G, Shirali P, Sichel F
Plos One, Feb 2012Abstract : Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B(1) exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B(1) and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers.
Rifampicin Does not Significantly Affect the Expression of Small Heterodimer Partner in Primary Human HepatocytesPavek P, Stejskalova L, Krausova L, Bitman M, Vrzal R, Dvorak Z
Frontiers in Pharm., Jan 2012Abstract : The small/short heterodimer partner (SHP, NR0B2) is a nuclear receptor corepressor lacking a DNA binding domain. SHP is induced by bile acid-activated farnesoid X receptor (FXR) resulting in CYP7A1 gene suppression. In contrast, Pregnane X receptor (PXR) activation by its ligands was recently suggested to inhibit SHP gene transactivation to maximize the induction of PXR target genes. However, there are also conflicting reports in literature whether PXR or rodent Pxr activation down-regulates SHP/Shp expression. Moreover, the PXR-mediated regulation of the SHP gene has been studied only at the SHP mRNA and transactivation (gene reporter assay) levels. In this study, we studied the effect of rifampicin, a prototype PXR ligand, on SHP mRNA, and protein expression in three primary human hepatocyte cultures. We found that SHP mRNA is not systematically down-regulated in hepatocyte in culture after 24 h treatment with rifampicin. Consistently, we did not observe down-regulation of SHP protein in primary human hepatocytes after 24 and 48 h of incubation with rifampicin. We can conclude that although we observed slight down-regulation of SHP mRNA and protein in several hepatocyte preparations, the phenomenon is unlikely critical for PXR-mediated induction of its target genes.
Antiviral Activity of Bay 41-4109 on Hepatitis B Virus in Humanized Alb-uPA/SCID Mice Brezillon N, Brunelle MN, Massinet H, Giang E, Lamant C, DaSilva L, Berissi S, Belghiti J, Hannoun L, Puerstinger G, Wimmer E, Neyts J, Hantz O, Soussan P, Morosan S, Kremsdorf D
PlosOne, Dec 2011Abstract : Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC(50) of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy.
Human scalp permeability to the chemical warfare agent VXRolland P, Bolzinger MA, Cruz C, Briançon S, Josse D
Tox in Vitro, Dec 2011Abstract : The use of chemical warfare agents such as VX in terrorism act might lead to contamination of the civilian population. Human scalp decontamination may require appropriate products and procedures. Due to ethical reasons, skin decontamination studies usually involve in vitro skin models, but human scalp skin samples are uncommon and expensive. The purpose of this study was to characterize the in vitro permeability to VX of human scalp, and to compare it with (a) human abdominal skin, and (b) pig skin from two different anatomic sites: ear and skull roof, in order to design a relevant model. Based on the VX skin permeation kinetics and distribution, we demonstrated that (a) human scalp was significantly more permeable to VX than abdominal skin and (b) pig-ear skin was the most relevant model to predict the in vitro human scalp permeability. Our results indicated that the follicular pathway significantly contributed to the skin absorption of VX through human scalp. In addition, the hair follicles and the stratum corneum significantly contributed to the formation of a skin reservoir for VX.
Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 geneKrausova L, Stejskalova L, Wang H, Vrzal R, Dvorak Z, Mani S, Pavek P
Biochem Pharmacol, Dec 2011Abstract : Metformin is widely used in the treatment of type-2 diabetes. The pleotropic effects of metformin on glucose and lipid metabolism have been proposed to be mediated by the activation of AMP-activated protein kinase (AMPK) and the subsequent up-regulation of small heterodimer partner (SHP). SHP suppresses the functions of several nuclear receptors involved in the regulation of hepatic metabolism, including pregnane X receptor (PXR), which is referred to as a "master regulator" of drug/xenobiotic metabolism. In this study, we hypothesize that metformin suppresses the expression of CYP3A4, a main detoxification enzyme and a target gene of PXR, due to SHP up-regulation. We employed various gene reporter assays in cell lines and qRT-PCR in human hepatocytes and in Pxr(-/-) mice. We show that metformin dramatically suppresses PXR-mediated expression of CYP3A4 in hepatocytes. Consistently, metformin significantly suppressed the up-regulation of Cyp3a11 mRNA in the liver and intestine of wild-type mice, but not in Pxr(-/-) mice. A mechanistic investigation of the phenomenon showed that metformin does not significantly up-regulate SHP in human hepatocytes. We further demonstrate that AMPK activation is not involved in this process. We show that metformin disrupts PXR's interaction with steroid receptor coactivator-1 (SRC1) in a two-hybrid assay independently of the PXR ligand binding pocket. Metformin also inhibited vitamin D receptor-, glucocorticoid receptor- and constitutive androstane receptor (CAR)-mediated induction of CYP3A4 mRNA in human hepatocytes. We show, therefore, a suppressive effect of metformin on PXR and other ligand-activated nuclear receptors in transactivation of the main detoxification enzyme CYP3A4 in human hepatocytes.
Comparison of several reconstructed cultured human skin models by microscopic observation: their usefulness as an alternative membrane for skin in drug permeation experimentsKano S, Tanuma N, Yatsu T, Li W, Koike K & Inouye Y
AATEX, Nov 2011Abstract : The constitutive androstane receptor (CAR, NR1I3) is very important for drug development and for understanding pharmacokinetic drug–drug interactions. We screened by mammalian one hybrid assay among natural compounds to discover novel ligands of human constitutive androstane receptor (hCAR). hCAR transcriptional activity was measured by luciferase assay and mRNA levels of CYP2B6 and CYP3A4 in HepTR-hCAR cells and human primary hepatocytes were measured by real-time RT-PCR. Nigramide J (NJ) whose efficacy is comparable to those of hitherto known inverse agonists such as clotrimazole, PK11195, and ethinylestradiol. NJ is a naturally occurring cyclohexane-type amide alkaloid that was isolated from the roots of Piper nigrum. The suppressive effect of NJ on the CAR-dependent transcriptional activity was found to be species specific, in the descending order of hCAR, rat CAR, and mouse CAR. The unliganded hCAR-dependent transactivation of reporter and endogenous genes was suppressed by NJ at concentrations higher than 5 lmol/L. The ligand-binding cavity of hCAR was shared by NJ and CITCO, because they were competitive in the binding to hCAR. NJ interfered with the interaction of hCAR with coactivator SRC-1, but not with its interaction with the corepressor NCoR1. Furthermore, NJ is agonist of human pregnane X receptor (hPXR). NJ is a dual ligand of hCAR and hPXR, being an agonist of hPXR and an inverse agonist of hCAR.
The presence of N?-(Carboxymethyl) lysine in the human epidermisKawabata K, Yoshikawa H, Saruwatari K, Akazawa Y, Inoue T, Kuze T, Sayo T, Uchida N, Sugiyama Y
BBA, Oct 2011Abstract : It is well known that advanced glycation end products (AGEs) are formed in long-lived dermal proteins such as collagen, and that their formation is related to skin aging. To examine the distribution of AGEs in skin tissue, we performed immunofluorescence studies on the human skin using an anti-AGEs antibody. Interestingly, AGEs signals were observed not only in the dermis but also in the epidermis. The objectives of this study were to confirm the presence of N(ε)-(Carboxymethyl) lysine (CML), an AGE structure, in the epidermis and to characterize the CML-modified proteins. The presence of CML in the stratum corneum (SC) was examined using liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Concordance between the retention times of a compound in the SC hydrolysate and authentic CML, as well as with the specific mass transition of CML, was detected. This result showed that CML is present in the epidermis. In order to characterize the CML-modified proteins in the epidermis, protein samples extracted from the SC were analyzed using two-dimensional electrophoresis followed by an amino acid sequence analysis. The clarified peptide sequences covered approximately 27% of the amino acid sequences of cytokeratin 10 (K10). In the immunoblotting experiment following the two-dimensional electrophoresis, where protein samples extracted from whole epidermis were used, the position of the major CML-positive spots corresponded to those of K10. Taken together these results showed that CML is present in the human epidermis, and suggest that K10 is one of the target molecules for CML modification in the epidermis.
Fully automated microinjection system for Xenopus laevis oocytes with integrated sorting and collection.Graf SF, Madigou T, Li R, Chesné C, Stemmer A, Knapp HF
J. of the Association for Laboratory Automation, Jun 2011Abstract : Microinjection is the most flexible transfection method in terms of choice of reagents to inject into cells. But this method lacks the high throughput to compete with less flexible methods like chemical- or viral-based approaches. Various approaches have been pursued to increase the throughput by automating the microinjection process. However, these approaches focused solely on the microinjection itself and disregarded the tasks before and after the injection, which also belong to the critical time path of the whole process, that is, sorting out viable cells from a cell suspension, placing the cell for injection, and collecting the cell after the injection. In the approach with our XenoFactor, we demonstrate a system capable of running the whole process automatically. By optimizing the XenoFactor for Xenopus laevis oocytes, we could demonstrate the successful automated injection. Starting from a suspension with a mixture of defolliculated oocytes at different stages and quality levels, the manual approach requires 1 day in total for the preparation of 400 microinjected oocytes. The XenoFactor takes only 4h for the same amount and delivers injected oocytes of reproducible quality and without the fatigue symptoms experienced during the manual approach.
Comparative Gene Expression Profiles Induced by PPAR? and PPAR?/? Agonists in Human HepatocyteRogue A, Lambert C, Jossé R, Antherieu S, Spire C, Claude N, Guillouzo A
Plos One, Apr 2011Abstract : BACKGROUND: Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes.METHODOLOGY/PRINCIPAL FINDINGS: Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells.CONCLUSIONS/SIGNIFICANCE: This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients.
CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipientsPicard N, Rouguieg-Malki K, Kamar N, Rostaing L, Marquet P
Transplantation, Mar 2011Abstract : BACKGROUND: CYP3A5 genotyping might be useful to guide tacrolimus and sirolimus dosing. The aim of this study was to assess the influence of CYP3A5 polymorphism on everolimus metabolism and pharmacokinetics.METHODS: We investigated the effect of CYP3A5 6986A>G polymorphism (CYP3A5*1/*3 alleles) on the pharmacokinetics of everolimus in 28 renal transplant patients and on its in vitro hepatic metabolism using a bank of genotyped human liver microsomes (n=49). We further evaluated in vitro the contribution of CYP3A4, CYP3A5, and CYP2C8 to everolimus hepatic metabolism using recombinant enzymes.RESULTS: We found no association between CYP3A5 polymorphism and everolimus pharmacokinetics in renal transplant patients. On the other hand, no effect of CYP3A5 polymorphism was observed on the intrinsic clearance of everolimus by human liver microsomes, whereas that of tacrolimus (positive control) was 1.5-fold higher in microsomes carrying the CYP3A5*1 allele than in noncarriers. In vitro data showed that CYP3A4 is a better catalyst of everolimus metabolism than CYP3A5, whereas the opposite was observed for tacrolimus.CONCLUSIONS: This study provides direct and indirect evidence that CYP3A5 genotyping cannot help improve everolimus therapy.
Effect of cryopreservation on the activity of OATP1B1/3 and OCT1 in isolated human hepatocytesBadolo L, Trancart MM, Gustavsson L, Chesné C
Chemico Biological Int., Feb 2011Abstract : Drug metabolism in liver is the major pathway for xenobiotic elimination from the body. Access to intracellular metabolising enzymes is possible through passive diffusion of lipophilic drugs through cell membrane or active uptake of more polar drugs by specific uptake transporters. Organic Anion Transporting Polypeptides (OATP/SLCO) and Organic Cation Transporters (OCT/SLC22A) are among the most important transporters involved in xenobiotic transport into hepatocytes. Isolated hepatocytes are the model of choice for drug metabolism and drug transport investigations. These primary cells are used either as fresh directly after isolation from liver biopsies, or after subsequent cryopreservation in liquid nitrogen. While cryopreserved hepatocytes are a more convenient and flexible tool for in vitro investigations, information on the functionality of transporter activity after cryopreservation is still sparse. The present study investigated the effect of cryopreservation of human hepatocytes on the uptake of [(3)H]-estradiol-17β-glucuronide (E(2)17βG, substrate of OATP1B1/3/SLCO1B1/3) and [(3)H]-1-methyl-4-phenylpyridinium (MPP+, substrate of OCT1/SLC22A1) into hepatocytes from 6 and 5 human donors, respectively. The results showed that cryopreserved human hepatocytes display carrier-mediated uptake of E(2)17βG and MPP+. While the affinity of E(2)17βG for OATP1B1/3/SLCO1B1/3 was not affected by cryopreservation (Km unchanged, the Wilcoxon signed pair t test gave p=1), V(max) and CL(uptake) values decreased in average by 47% (p=0.06). The passive diffusion of E(2)17βG decreased significantly after cryopreservation (p=0.03). Cryopreservation did not affect Km, V(max) or the passive diffusion of MPP+ in human hepatocytes. In conclusion, the present study showed that cryopreserved human hepatocytes are useful tool to investigate hepatic uptake mediated by OATP1B1/3/SLCO1B1/3 or OCT1/SLC22A1, two of the most important hepatic uptake transporters.
Marine Natural Meroterpenes: Synthesis and Antiproliferative ActivitySimon-Levert A, Menniti C, Soulère L, Genevière AM, Barthomeuf C, Banaigs B, Witczak A
Marine Drug, Feb 2011Abstract : Meroterpenes are compounds of mixed biogenesis, isolated from plants, microorganisms and marine invertebrates. We have previously isolated and determined the structure for a series of meroterpenes extracted from the ascidian Aplidium aff. densum. Here, we demonstrate the chemical synthesis of three of them and their derivatives, and evaluate their biological activity on two bacterial strains, on sea urchin eggs, and on cancerous and healthy human cells.
Prediction of Clinical CYP3A4 induction using cryopreserved human hepatocytesKaneko A, Kato M, Endo C, Nakano K, Ishigai M, Takeda K
Xenobiotica, Dec 2010Abstract : The purpose of this study was to construct a method to predict CYP3A4 induction in the clinical setting from in vitro data using cryopreserved human hepatocytes. We recently developed an approach with in vitro assays of HepaRG cell lines for predicting CYP3A4 induction by using a novel value, termed the relative factor (RF), determined from the ratio of the concentration of an inducer to the reference standard. In this study, the applicability of the RF approach was expanded to cryopreserved human hepatocytes. Induction assays were performed in vitro using hepatocytes from four individual donors and eight typical inducers. The obtained RF values were related to the free plasma concentration of each inducer (expressed as Css,u/RF). A good relationship between the Css,u/RF values and the in vivo induction response was found for all donors. Inducers were classified by the Css,u/RF values into three categories for CYP3A4 induction risk (high, medium and low potency), and thereby the degree of CYP3A4 induction in vivo in humans could be predicted from the Css,u/RF values. The RF approach is applicable to human cryopreserved hepatocytes. Thus, a method to predict the potency of CYP3A4 inducers was constructed using cryopreserved human hepatocytes.
Insulin Induces REDD1 Expression through Hypoxiainducible Factor 1 Activation in AdipocytesRegazzetti C, Bost F, Le Marchand-Brustel Y, Tanti JF, Giorgetti-Peraldi S
J Biol Chem, Nov 2010Abstract : REDD1 (regulated in development and DNA damage responses) is essential for the inhibition of mTORC1 (mammalian target of rapamycin complex) signaling pathway in response to hypoxia. REDD1 expression is regulated by many stresses such as hypoxia, oxidative stress, and energy depletion. However, the regulation of REDD1 expression in response to insulin remains unknown. In the present study, we demonstrate that in murine and in human adipocytes, insulin stimulates REDD1 expression. Insulin-induced REDD1 expression occurs through phosphoinositide 3-kinase/mTOR-dependent pathways. Moreover, using echinomycin, a hypoxia-inducible factor 1 (HIF-1) inhibitor, and HIF-1alpha small interfering RNA, we demonstrate that insulin stimulates REDD1 expression only through the transcription factor HIF-1. In conclusion, our study shows that insulin stimulates REDD1 expression in adipocytes.
Liverbeads?: a practical and relevant in vitro model for gene induction investigationsAl Khansa I, Blanck O, Guillouzo A, Bars R
Drug Metab Dis, Sep 2010Abstract : Cryopreserved rat hepatocytes entrapped within an alginate matrix, commercially available as Liverbeads, were evaluated for their relevance as a screening tool for gene induction in vitro, using quantitative real-time reverse transcriptase-polymerase chain reaction. They were treated with the reference compounds beta-naphthoflavone (BNF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), and clofibric acid (CLO) and analyzed for mRNA levels of Cyp1a1, Cyp2b1, Cyp3a1, Cyp4a1, Ugt1a6, and Ugt2b1. In addition, for PB and PCN, the results were compared with those obtained in rat liver in vivo. For each inducer, the gene induction profiles obtained with the Liverbeads in vitro model were time- and dose-dependent. The in vitro gene expression profiles confirmed the corresponding known P450 and UGT induction by each reference compound. In particular, the most strongly induced genes were Cyp1a1 by BNF, Cyp2b1 by PB, Cyp3a1 and Ugt2b1 by PCN, and Cyp4a1 and Cyp2b1 by CLO. Other genes investigated were also induced by the reference compounds, but the expression levels were lower, and increases were seen only after prolonged treatment. In particular, Ugt1a6 and Cyp2b1 were increased by BNF, Cyp1a1, Cyp3a1, and Ugt2b1 by PB, and Cyp3a1 and Ugt2b1 by CLO. All of these results correlated well with published in vitro data and our in vivo data. In conclusion, our results suggest that Liverbeads is a relevant and useful in vitro screening tool for determining gene induction profiles of new molecules. In addition, because Liverbeads from different species are available, this tool offers the possibility to conduct interspecies comparisons.
Human Embryonic and Rat Adult Stem Cells with Primitive Endoderm-Like Phenotype Can Be Fated to Definitive Endoderm, and Finally Hepatocyte-Like CellsRoelandt P, Pauwelyn KA, Sancho-Bru P, Subramanian K, Bose B, Ordovas L, Vanuytsel K, Geraerts M, Firpo M, De Vos R, Fevery J, Nevens F, Hu WS, Verfaillie CM
Plos One, Aug 2010Abstract : Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10-20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.
A Comparison of Whole Genome Gene Expression Profiles of HepaRG Cells and HepG2 Cells to Primary Human Hepatocytes and Human Liver TissuesHart N, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB
Drug Metab Dis, Jun 2010Abstract : HepaRG cells, derived from a female hepatocarcinoma patient, are capable of differentiating into biliary epithelial cells and hepatocytes. More importantly, differentiated HepaRG cells are able to maintain activities of many xenobiotic-metabolizing enzymes, and expression of the metabolizing enzyme genes can be induced by xenobiotics. The ability of these cells to express and induce xenobiotic-metabolizing enzymes is in stark contrast to the frequently used HepG2 cells. The previous studies have mainly focused on a set of selected genes; therefore, it is of significant interest to know the extent of similarity of gene expression at whole genome levels in HepaRG cells and HepG2 cells compared with primary human hepatocytes and human liver tissues. To accomplish this objective, we used Affymetrix (Santa Clara, CA) U133 Plus 2.0 arrays to characterize the whole genome gene expression profiles in triplicate biological samples from HepG2 cells, HepaRG cells (undifferentiated and differentiated cells), freshly isolated primary human hepatocytes, and frozen liver tissues. After using similarity matrix, principal components, and hierarchical clustering methods, we found that HepaRG cells globally transcribe genes at levels more similar to human primary hepatocytes and human liver tissues than HepG2 cells. In particular, many genes encoding drug-processing proteins are transcribed at a more similar level in HepaRG cells than in HepG2 cells compared with primary human hepatocytes and liver samples. The transcriptomic similarity of HepaRG with primary human hepatocytes is encouraging for use of HepaRG cells in the study of xenobiotic metabolism, hepatotoxicology, and hepatocyte differentiation.
Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiationHamidouche Z, Fromigué O, Ringe J, Häupl T, Marie PJ
BMC Cell Bio, Jun 2010Abstract : BACKGROUND: The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs.RESULTS: Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and in vitro osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs.CONCLUSION: The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.
In Vivo Identification of Solar Radiation-Responsive Gene Network: Role of the p38 Stress-Dependent Kinase Mouchet N, Adamski H, Bouvet R, Corre S, Courbebaisse Y, Watier E, Mosser J, Chesné C, Galibert MD
Plos One, May 2010Abstract : Solar radiation is one of the most common threats to the skin, with exposure eliciting a specific protective cellular response. To decrypt the underlying mechanism, we used whole genome microarrays (Agilent 44K) to study epidermis gene expression in vivo in skin exposed to simulated solar radiation (SSR). We procured epidermis samples from healthy Caucasian patients, with phototypes II or III, and used two different SSR doses (2 and 4 J/cm(2)), the lower of which corresponded to the minimal erythemal dose. Analyses were carried out five hours after irradiation to identify early gene expression events in the photoprotective response. About 1.5% of genes from the human genome showed significant changes in gene expression. The annotations of these affected genes were assessed. They indicated a strengthening of the inflammation process and up-regulation of the JAK-STAT pathway and other pathways. Parallel to the p53 pathway, the p38 stress-responsive pathway was affected, supporting and mediating p53 function. We used an ex vivo assay with a specific inhibitor of p38 (SB203580) to investigate genes the expression of which was associated with active p38 kinase. We identified new direct p38 target genes and further characterized the role of p38. Our findings provide further insight into the physiological response to UV, including cell-cell interactions and cross-talk effects.
Controlling integrin specificity and stem cell differentiation in 2-D and 3-D environments through regulation of fibronectin domain stabilityMartino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH
Biomaterials, Feb 2010Abstract : The extracellular matrix (ECM) exerts powerful control over many cellular phenomena, including stem cell differentiation. As such, design and modulation of ECM analogs to ligate specific integrin is a promising approach to control cellular processes in vitro and in vivo for regenerative medicine strategies. Although fibronectin (FN), a crucial ECM protein in tissue development and repair, and its RGD peptide are widely used for cell adhesion, the promiscuity with which they engage integrins leads to difficulty in control of receptor-specific interactions. Recent simulations of force-mediated unfolding of FN domains and sequences analysis of human versus mouse FN suggest that the structural stability of the FN's central cell-binding domains (FN III9-10) affects its integrin specificity. Through production of FN III9-10 variants with variable stabilities, we obtained ligands that present different specificities for the integrin alpha(5)beta(1) and that can be covalently linked into fibrin matrices. Here, we demonstrate the capacity of alpha(5)beta(1) integrin-specific engagement to influence human mesenchymal stem cell (MSC) behavior in 2D and 3D environments. Our data indicate that alpha(5)beta(1) has an important role in the control of MSC osteogenic differentiation. FN fragments with increased specificity for alpha(5)beta(1) versus alpha(v)beta(3) results in significantly enhanced osteogenic differentiation of MSCs in 2D and in a clinically relevant 3D fibrin matrix system, although attachment/spreading and proliferation were comparable with that on full-length FN. This work shows how integrin-dependant cellular interactions with the ECM can be engineered to control stem cell fate, within a system appropriate for both 3D cell culture and tissue engineering.